Synthesis and coordination chemistry of N-doped polyphenylenes

S.D. Perera¹, R.Quesada² and S.M. Draper³
ksper@ou.ac.lk

The N-doped polyphenylene derivatives are expected to show interesting optical, electrochemical and structural properties. 8-Azafluoranthene ligands (2a) and (2b) were prepared by a Diels-Alder cycloaddition reaction between 2-cyanopyridine and the corresponding cyclopentadienone. Treatment of [Mo(CO)₄(piperidine)₂] with ligands (2) gave the tetracarbonylmolybdenum(0) complexes [Mo(CO)₄(2)] (3), in which the ligand is coordinated to the metal through both nitrogen donors. Treatment of (2b) with [Pd(OAc)₂] gave the cyclometallated Pd(II) complex [Pd(OAc)(L)] (4a), in which L is an anionic terdentate-ligand. Treatment of (2b) with [PdCl₂(NCPh)₂] gave the complex [PdCl(L)] (4b). The acetate group of (4a) can be easily replaced by halide ions to give [PdCl(L)] (4b), [PdBr(L)] (4c) and [PdI(L)] (4d), respectively. Treatment of (4a) with DMAP and PPh₃ in dichloromethane and the subsequent addition of NH₄PF₆ in methanol gave the corresponding salts [Pd(DMAP)(L)]PF₆ (6a) and [Pd(PPh₃)(L)]PF₆ (6b), respectively.

Introduction

Polyphenylenes or hexaarylbenezene derivatives (I) are of considerable interest as they are the precursors for polycyclic aromatic hydrocarbons (Watson et al 2001). Introduction of heteroaromatic groups such as pyridyl and pyrimidyl into these systems opens the possibility for them to act as ligands. A few years ago we reported the synthesis of N-heterosuperbenzene (N-HSB) (II) by cyclodehydrogenation of the precursor (III) (Draper et al 2002). The N-doped graphene (II) and its transition metal complexes have shown interesting optical, electrochemical and structural properties (Draper et al 2004). Recently we reported the synthesis of a pyridyl-centred polyphenylene (IV) and its coordination chemistry, particularly with rhodium and palladium (Ollagnier et al 2008).
Fluoranthenene (V) is a fused ring system with three benzene rings linked to a central 5-membered ring. The presence of a fused 5-membered ring in the skeleton makes fluoranthenene derivatives suitable for the preparation of curved molecules such as corannulene and semibuckminsterfullerene (Sygula & Rabidean, 1999). Fluoranthenene derivatives can be cyclodehydrogenated to generate large aromatic sheets (Debad et al 1996 & Wehmeier et al 2001). In this paper we describe the synthesis of new ligands (2a) and (2b) based on 8-azafluoranthenene, and their complexes with molybdenum(0) and palladium(II). (2a) and (2b) can be considered as bulky analogues of 6-phenyl-2,2'-bipyridine and they have the potential to coordinate to a metal centre in either bidentate or terdentate fashion via cyclometallation (see A and B in Figure 2).
Figure 2 Coordination modes of (2) to a metal centre M. R = H or Bu⁺.

Methodology

All the experiments were carried out in an inert atmosphere (nitrogen or argon). Elemental analyses were carried out on a Carlo Erba 1006 automatic analyser. IR spectra were recorded on a PerkinElmer Spectrum One FT-IR spectrometer fitted with a universal ATR sampling accessory. Mass spectral data were obtained using a micromass LCT electrospray mass spectrometer. NMR spectra were recorded on a Bruker DPX 400 spectrometer (operating frequencies for \(^1H \) and \(^{13}C \) are 400.13 and 100.62 MHz, respectively) or Bruker Avance\(^n \) 600 spectrometer (operating frequencies for \(^1H \) and \(^{13}C \) are 600.13 and 150.9 MHz). \(^1H \) and \(^{13}C \) chemical shifts (\(\delta \)) are in ppm with respect to TMS and coupling constants (\(J \)) are in Hz. Flash chromatography was carried out using silica gel as the stationary phase.

Acenaphthenequinone was purchased from Aldrich. 7,9-Diphenyl-8H-cyclopenta[l] acenaphthylene-8-one (1a) was prepared according to a literature procedure (Wehmeier \textit{et al} 2001).

7,9-Bis(4-tert-butylphenyl)-8H-cyclopenta[l]acenaphthylene-8-one (1b)

Acenaphthenequinone (400 mg, 2.19 mmol), 1,3-bis(4-tert-butylphenyl)propan-2-one (700 mg, 2.2 mmol) and NaOH (100 mg) were stirred at room temperature in MeOH (50 mL) for 24 h. The resulting black precipitate (1b) was filtered, washed with MeOH and dried in a vacuum. Yield (960 mg, 94%). An analytical sample was crystallised from CH\(_2\)Cl\(_2\)/MeOH. Found: C, 88.69; H, 6.79, calcd. (%) for C\(_{35}\)H\(_{32}\)O·0.1CH\(_2\)Cl\(_2\): C, 88.28; H, 6.80. IR (neat) cm\(^{-1}\): 2958, 1701, 1473, 1360, 1271, 1130, 840, 825 and 773. \(^1H \)-NMR (400 MHz,
CDCl₃: 8.12 (d, 2H, ³J(HH) 7.0 Hz, H³), 7.88 (d, 2H, ³J(HH) 8.0, Hz, H¹), 7.80 (d, 4H, ³J(HH) 8.0 Hz, H⁴), 7.61 (app. t, 2H, ³J(HH) 7.5 Hz, H²), 7.57 (d, 4H, ³J(HH) 8.0 Hz, H⁵) and 1.42 (s, 18H, CMe₃). ¹³C-NMR (100 MHz, CDCl₃): 202.0 (1C, C=O), 128.3 (2C, C⁴), 127.9 (1C, C²), 127.0 (1C, C¹), 125.1 (2C, C₅), 121.1 (C quat), 120.4 (1C, C³), 34.4 (C Me₃) and 30.9 (C Me₃).

7,10-Diphenyl-9-(2-pyridyl)-8-azafluoranthene (2a)

7,9-Diphenyl-8H-cyclopenta[l]acenaphthylen-8-one (600 mg, 1.68 mmol) and 2-cyano pyridine (1.1 g, 11.6 mmol) were refluxed under nitrogen for 48 h. The resulting brownish red solution was allowed to cool. Chromatography on silica using MeOH/CH₂Cl₂ gave (2a) as a pale yellow crystalline solid. Yield (180 mg, 25%). Found: C, 87.30; H, 4.62; N, 6.23, calcd. (%) for C₃₂H₂₀N₂·0.1CH₂Cl₂: C, 87.35; H, 4.58; N, 6.35. IR (neat) cm⁻¹: 3006, 1586, 1546, 1475, 1422, 1402, 1276, 1261, 828, 766, 749 and 704. ESI-MS (acetone, m/z): found: 433.1697, calcd. 433.1705, for C₃₂H₂₁N₂, [M+1]+. ¹H-NMR (400 MHz, CDCl₃): 8.52 (br, m, 1H, ³J(HH) 5.0 Hz, H¹₀), 7.95 (m, 2H, H⁴'), 7.87 (d, 1H, ³J(HH) 8.0 Hz, H¹), 7.87 (d, 1H, ³J(HH) 8.0 Hz, H¹'), 7.63-7.55 (m, 5H, H₃', H₅', H₆' and H₈), 7.52-7.49 (m, 2H, H₂' and H₇), 7.46-7.40 (m, 6H, H², H₄, H₅ and H₆), 7.12 (m, 1H, ³J(HH) 5.0, 7.5 Hz, ³J(HH) 1.5 Hz, H⁹) and 7.00 (d, 1H, ³J(HH) 7.0, Hz, H₃). ¹³C-NMR (100 MHz, CDCl₃): 148.4 (1C, C¹₀), 135.2 (1C, C⁸), 129.6 (2C, C⁴), 128.8 (2C, C⁴'), 128.5 (1C, C¹), 128.3 (1C, C⁶), 128.2 (2C, C⁵'), 128.1 (2C, C⁵), 127.5 (1C, C⁶'), 127.3 (1C, C²), 127.2 (1C, C²'), 127.0 (1C, C¹'), 124.9 (1C, C³), 124.6 (1C, C⁷'), 123.4 (1C, C³') and 121.6 (1C, C⁹).

7,10-Di(4-tert-butylphenyl)-9-(2-pyridyl)-8-azafluoranthene (2b) (LH)

Bis(4-tert-butylphenyl)-8H-cyclopenta[l]acenaphthylen-8-one (700 mg, 1.49 mmol) and 2-cyano pyridine (2.0 g) were refluxed under nitrogen for 60 h. The resulting brownish red solution was allowed to cool. Chromatography on silica using MeOH and CH₂Cl₂ gave (2b) as a pale yellow crystalline solid. Yield (310 mg, 38%). Found: C, 88.69; H, 6.79, calcd. (%) for C₃₅H₃₂O·0.1CH₂Cl₂: C, 88.28; H, 6.80. IR (neat) cm⁻¹: 2958, 1701, 1473, 1360, 1271, 1130, 840, 825 and 773. ESI-MS (acetone, m/z): found: 545.2953, calcd. 545.2957, for C₄₀H₃₇N₂, [M+1]+. ¹H-NMR (400 MHz, CDCl₃): 8.52 (br, m, 1H, ³J(HH) 4.0 Hz, H¹₀), 7.91 (d, 1H, ³J(HH) 8.0 Hz, H¹), 7.90 (d, 2H, ³J(HH) 8.5 Hz, H⁴'), 7.87 (d, 1H, ³J(HH) 8.0 Hz, H¹'), 7.72 (d, 1H, ³J(HH) 7.0 Hz, H³), 7.61 (d, 2H, ³J(HH) 8.5 Hz, H⁵'), 7.55-7.51 (m, 2H, H₂' and H₈), 7.47-7.44 (m, 3H, ³J(HH)
8.5 Hz, H^5 and H^3), 7.43 (d, 1H, ^3J(HH) 8.0 Hz, H^7), 7.35 (d, 2H, ^3J(HH) 8.5 Hz, H^6), 7.12 (m, 1H, H^8), 7.02 (d, 1H, ^3J(HH) 7.0 Hz, H^9), 1.45 (s, 9H, CMe^3) and 1.41 (s, 9H, CMe^3). ^13C-NMR (100 MHz, CDCl_3, δ in ppm): 148.3 (1C, C^10), 134.9 (1C, C^8), 129.2 (2C, C^4), 128.4 (2C, C^4), 128.3 (1C, C^1), 127.5 (1C, C^2), 127.3 (1C, C^2), 126.9 (1C, C^1), 125.0 (2C, C^5), 124.9 (2C, C^5), 124.8 (1C, C^3), 124.6 (1C, C^3), 123.4 (1C, C^3), 121.5 (1C, C^9), 34.4 (1C, CMe^3), 34.2 (1C, CMe^3) and 31.0 (6C, CMe^3).

[Mo(CO)_4(2a)] (3a)

A solution containing (2a) (20 mg, 0.046 mmol) and [Mo(CO)_4(piperidine)_2] (17 mg, 0.046 mmol) in CH_2Cl_2 (1.5 mL) was stirred at room temperature for 30 min. The resulting dark brown solution was concentrated to a low volume (ca. 0.5 mL); the addition of methanol gave (3a) as black crystals (29 mg, 97%). Found: C, 57.99; H, 3.02; N, 3.62, calcd. (%) for C_{36}H_{20}N_2O_4Mo · 1.5CH_2Cl_2: C, 58.70; H, 3.01; N, 3.64. IR (neat, ν, cm\(^{-1}\)): 2005, 1863, 1823, 1420, 1408, 828, 766 and 700. ^1H-NMR (400 MHz, CDCl_3): 9.24 (br, d, 1H, ^3J(HH) 5.5 Hz, H^10), 7.98 (d, 1H, ^3J(HH) 8.0 Hz, H^1 or H^1'), 7.91 (d, 1H, ^3J(HH) 8.5 Hz, H^1 or H^1'), 7.75-7.71 (m, 6H, Ph), 7.67-7.65 (m, 2H, Ph), 7.59-7.57 (m, 2H, Ph), 7.48-7.44 (m, 2H, H^2 and H^2'), 7.41 (m, 1H, ^3J(HH) 7.5 Hz, ^4J(HH) 1.5 Hz, H^8), 7.23 (d, 1H, ^3J(HH) 8.5 Hz, H^7), 7.16 (m, 1H, ^3J(HH) 5.5 Hz, ^4J(HH) 1.5 Hz, H^9), 6.79 (d, 1H, ^3J(HH) 7.5 Hz, H^3 or H^3') and 6.66 (d, 1H, ^3J(HH) 7.0 Hz, H^3 or H^3'). ^13C-NMR (100 MHz, CDCl_3): 225.7 (1C, C≡O), 217.1 (1C, C≡O), 204.6 (2C, C≡O), 152.5 (1C, C^10), 134.9 (1C, C^8), 130.0 (1C, C^1 or C^1'), 129.7 (1C, C^1 or C^1'), 129.4 (2C, Ph), 129.1 (1C, Ph), 129.0 (2C, Ph), 128.9 (2C, Ph), 128.4 (2C, Ph), 128.2 (1C, C^1 or C^1'), 127.9 (1C, C^2 or C^2'), 127.6 (1C, C^2 or C^2'), 126.9 (1C, C^7), 126.3 (1C, C^3 or C^3'), 125.4 (1C, C^3 or C^3') and 122.9 (1C, C^9).

[Mo(CO)_4(2b)] (3b)

A solution containing (2b) (20 mg, 0.046 mmol) and [Mo(CO)_4(piperidine)_2] (17 mg, 0.046 mmol) in CH_2Cl_2 (1.5 mL) was stirred at room temperature for 30 min. The resulting dark brown solution was concentrated to a low volume (ca. 0.5 mL); then MeOH was added to give (3b) as black crystals (23 mg, 83%). Found: C, 69.87; H, 4.81; N, 3.65, calcd. (%) for C_{44}H_{36}N_2O_4Mo: C, 70.21; H, 4.82; N, 3.72. IR (neat, ν, cm\(^{-1}\)): 2963, 2001, 1872, 1829, 1815, 1422, 1118, 828 and 779. ^1H-NMR (400 MHz, CDCl_3): 9.23 (br, d, 1H, ^3J(HH) 4.5 Hz, H^10), 7.97 (d, 1H, ^3J(HH) 8.0 Hz, H^1 or H^1'), 7.90 (d, 1H, ^3J(HH) 8.0 Hz, H^1 or H^1'), 7.73 (d, 2H, ^3J(HH) 8.5 Hz, H^5 or H^5'), 7.71 (d, 2H, ^3J(HH) 8.5 Hz, H^5 or H^5'), 7.58 (d, 2H, ^3J(HH) 8.5 Hz, H^4 or H^4'), 7.47 (d, 2H, ^3J(HH) 8.5 Hz, H^4 or H^4'), 7.48-7.44 (m, 2H, H^2 and H^2'), 7.36 (m, 1H, ^3J(HH) 8.5 Hz,
Synthesis and coordination chemistry of N-doped polyphenylenes

4J(HH) 1.5 Hz, H6), 7.20 (d, 1H, 3J(HH) 8.0 Hz, H7), 7.13 (br, m, 1H, H9), 6.81 (d, 1H, 3J(HH) 7.5 Hz, H3 or H9), 6.72 (d, 1H, 3J(HH) 7.0 Hz, H3 or H9), 1.52 (s, 9H, CMe$_3$) and 1.51 (s, 9H, CMe$_3$). 13C-NMR: 225.8 (1C, C≡O), 216.6 (1C, C≡O), 204.8 (2C, C≡O), 152.4 (1C, C10), 134.7 (1C, C8), 129.7 (1C, C1 or C$^1'$), 128.6 (Ar), 128.0 (1C, C1 or C$^1'$), 127.9 (Ar and C2 or C$^2'$), 127.5 (1C, C2 or C$^2'$), 126.8 (1C, C7), 126.8 (Ar), 126.3 (1C, C3 or C$^3'$), 125.7 (Ar), 125.4 (1C, C3 or C$^3'$), 122.7 (1C, C9), 34.61 (1C, CMe$_3$), 34.58 (1C, CMe$_3$), 31.1 (3C, CMe$_3$) and 31.0 (3C, CMe$_3$).

$^{[Pd(OAc)(L)]} (4a)$

A solution containing (2b) (40 mg, 0.073 mmol) and $^{[Pd(OAc)_2]}$ (16.5 mg, 0.073 mmol) in CH$_2$Cl$_2$ (4 mL) was refluxed for 3 h. The solution was concentrated to a low volume (ca. 1 mL) then diethyl ether was added to give (4a) as a yellow solid (49 mg, 94%). Found: C, 69.33; H, 5.13; N 3.69, calcd. (%) for C$_42$H$_{38}$N$_2$O$_2$Pd·0.2CH$_2$Cl$_2$: C, 69.79; H, 5.33; N 3.86. IR (neat, ν, cm$^{-1}$): 2962, 1619 (C=O), 1584, 1420, 1368, 1319, 1266, 824, 781 and 669. ESI-MS (acetone, m/z): found: 649.1848, calcd. 649.1835 for C$_{40}$H$_{35}$N$_2$Pd, [M-OAc]$^+$.

1H-NMR (400 MHz, CDCl$_3$, δ in ppm): 8.81 (d, 1H, 3J(HH) 7.0 Hz, H3), 8.61 (br, d, 1H, 3J(HH) 5.0 Hz, H10), 8.21 (d, 1H, 3J(HH) 8.0 Hz, H3), 8.02 (d, 1H, 3J(HH) 7.5 Hz, H1), 8.02 (d, 1H, 3J(HH) 7.5 Hz, H3), 7.77 (t, 1H, 3J(HH) 7.5 Hz, H7), 7.74 (d, 2H, 3J(HH) 8.0 Hz, H5), 7.47 (d, 1H, 4J(HH) 1.5 Hz, H11), 7.47 (m, 1H, 4J(HH) 1.5 Hz, H8, overlaps with H11), 7.40 (m, 1H, H2, overlaps with H6), 7.40 (d, 2H, 3J(HH) 8.0 Hz, H9), 7.35 (m, 1H, H9), 7.26 (dd, 1H, 3J(HH) 8.0 Hz, 4J(HH) 1.5 Hz, H12), 6.83 (d, 1H, 3J(HH) 8.5 Hz, H7), 6.46 (d, 1H, 3J(HH) 7.0 Hz, H3), 1.53 (s, 9H, CMe$_3$) and 1.43 (s, 9H, CMe$_3$). 13C-NMR: 177.5 (C=O), 160.4 (C$_{quat}$, PdC), 149.8 (1C, C10), 137.6 (1C, C8), 129.9 (1C, C11), 129.6 (1C, C1), 128.4 (1C, C1), 128.2 (2C, C4), 127.6 (1C, C3), 127.5 (1C, C2), 127.1 (2C, C5), 126.2 (1C, C13), 125.6 (1C, C3), 125.6 (1C, C3), 125.3 (1C, C7), 125.1 (1C, C9), 120.9 (1C, C12), 34.71 (CMe$_3$), 34.65 (CMe$_3$), 31.0 (CMe$_3$), 30.8 (CMe$_3$) and 23.8 (C(=O)Me).

$^{[PdCl(L)]} (4b)$

A solution containing the ligand (2b) (40 mg, 0.073 mmol) and $^{[PdCl_2(NCPh)_2]}$ (14 mg, 0.037 mmol) in CH$_2$Cl$_2$ (2 mL) was refluxed for 45 min to give a yellow precipitate. The solution was concentrated to a low volume and the yellow precipitate (4b) was filtered and washed with methanol, (22 mg, 88%). Found: C, 69.62; H, 5.12; N 3.88, calcd. (%) for C$_{40}$H$_{35}$N$_2$PdCl: C, 70.07; H, 5.15; N 4.09. IR (neat, ν, cm$^{-1}$): 2949, 1546, 1582, 1422, 826 and 772. ESI-MS (MeCN, m/z): found: 649.1855; calcd. 649.1835 for C$_{40}$H$_{35}$N$_2$Pd, [M-Cl]$^+$. 1H-NMR (400 MHz,
CDCl$_3$: 9.06 (br, m, 1H, H$_{10}$), 8.83 (d, 1H, 3J(HH) 7.5 Hz, H$_3$), 8.24 (d, 1H, 3J(HH) 8.0 Hz, H$_{11}$), 8.05 (d, 1H, 4J(HH) 2.0 Hz, H$_{10}$), 8.04 (d, 1H, 3J(HH) 8.0 Hz, H$_1$), 8.02 (d, 1H, 3J(HH) 7.5 Hz, H$_{11}$), 7.78 (t, 1H, 3J(HH) 7.5 Hz, H$_2$), 7.76 (d, 2H, 3J(HH) 8.0 Hz, H$_9$), 7.51 (dt, 1H, 3J(HH) 8.0 Hz, 4J(HH) 1.5 Hz, H$_8$), 7.44 (d, 2H, 3J(HH) 8.0 Hz, H$_9$), 7.39 (m, 2H, H$_2$ overlap with H$_4$), 7.26 (dd, 1H, 3J(HH) 8.5 Hz, 4J(HH) 8.0 Hz, H$_{12}$), 6.84 (d, 1H, 3J(HH) 8.5 Hz, H$_7$), 6.48 (d, 1H, 3J(HH) 8.0 Hz, H$_3$), 1.54 (s, 9H, CMe$_3$) and 1.44 (s, CMe$_3$).

13C-NMR (100 MHz, CDCl$_3$): 150.0 (1C, C$_{10}$), 133.8 (1C, C$_{11}$), 138.1 (1C, C$_9$), 130.1 (1C, C$_1$), 128.9 (1C, C$_1$), 128.8 (2C, C$_1$), 128.1 (1C, C$_2$), 128.1 (1C, C$_3$), 127.6 (2C, C$_5$), 126.3 (1C, C$_{13}$), 126.7 (1C, C$_3$), 126.2 (1C, C$_3$), 125.6 (1C, C$_7$), 125.4 (1C, C$_9$) and 121.2 (1C, C$_{12}$).

[PdCl(L)] (4b) from (4a)

A solution of NH$_4$Cl (6 mg, 0.112 mmol) in methanol (1 mL) was added to a suspension of (4a) (15 mg, 0.021 mmol) in acetone (4 mL) and dichloromethane (1 mL). The reaction mixture was stirred at room temperature for 15 h; the solvent was then removed and the product extracted into dichloromethane. The combined extract was concentrated and methanol was added to give the required product (4b) as a yellow solid, (12 mg, 83%).

[PdBr(L)] (4c) from (4a)

A solution of NaBr (11 mg, 0.109 mmol) in methanol (1 mL) was added to a suspension of (4a) (13 mg, 0.0183 mmol) in acetone (4 mL) and dichloromethane (1 mL). The reaction mixture was stirred at room temperature for 24 h; the solvent was then removed and the residue was extracted with dichloromethane. The combined extract was concentrated and methanol was added to give the required product (4c) as a yellow solid, (11 mg, 83%). Found: C, 65.55; H, 4.80; N 3.57, calcd. (%) for C$_{40}$H$_{35}$N$_2$BrPd: C, 65.81; H, 4.83; N 3.84. IR (neat, ν, cm$^{-1}$): 2960, 1582, 1545, 1421, 1276, 1261, 824, 765 and 750. ESI-MS (acetonitrile, m/z): found: 649.1823; calcd. 649.1835 for C$_{40}$H$_{35}$N$_2$Pd, [M-Br]$^+$.
9H, CMe$_3$). 13C-NMR (100 MHz, CDCl$_3$): 151.1 (1C, C10), 136.4 (1C, C11), 137.9 (1C, C6), 130.1 (1C, C1), 129.0 (1C, C$^1'$), 128.8 (2C, C8), 128.0 (1C, C3), 128.1 (1C, C2), 127.6 (2C, C3), 126.4 (1C, C13), 126.7 (1C, C3), 126.2 (1C, C3), 125.7 (1C, C7), 125.6 (1C, C9) and 121.0 (1C, C12).

$[\text{PdBr}[\text{L}]]$ (4c) from (4b)

A solution of NaBr (11 mg, 0.109 mmol) in methanol (1 mL) was added to a suspension of (4b) (13 mg, 0.0189 mmol) in acetone (4 mL) and CH$_2$Cl$_2$ (1 mL). The reaction mixture was stirred at room temperature for 20 h; the solvent was then removed and the residue was extracted with dichloromethane. The combined extract was concentrated and methanol was added to give the required product (4c) as a yellow solid, (13 mg, 94%).

$[\text{PdI}[\text{L}]]$ (4d)

To a suspension of (4a) (15 mg, 0.021 mmol) in acetone (4 mL) and CH$_2$Cl$_2$ (1 mL) was added NaI (16 mg, 0.105 mmol). The reaction mixture was stirred at room temperature for 20 h; the solvent was then removed and the residue extracted with CH$_2$Cl$_2$. The combined extract was concentrated and added methanol to give the required product (4d) as a yellow solid, (15 mg, 91%). Found: C, 61.46; H, 4.53; N 3.34, calcd. (%) for C$_{40}$H$_{35}$N$_2$Pd: C, 61.83; H, 4.54; N 3.61. IR (neat, ν, cm$^{-1}$): 2960, 1584, 1547, 1420, 824 and 771. ESI-MS (acetonitrile, m/z): found: 649.1865; calcd. 649.1835 for C$_{40}$H$_{35}$N$_2$Pd, [M-I]$^+$.

1H-NMR (400 MHz, CDCl$_3$, δ in ppm): 9.45 (dd, 1H, 3J(HH) 5.0 Hz, 4J(HH) 1.0 Hz, H10), 8.80 (d, 1H, 3J(HH) 7.0 Hz, H3), 8.65 (d, 1H, 4J(HH) 2.0 Hz, H11), 8.23 (d, 1H, 3J(HH) 8.0 Hz, H13), 8.04 (d, 1H, 3J(HH) 8.0 Hz, H1), 8.02 (d, 1H, 3J(HH) 8.0 Hz, H1), 7.76 (t, 1H, 3J(HH) 8.0 Hz, H2), 7.75 (d, 2H, 3J(HH) 8.5 Hz, H9), 7.48 (dt, 1H, 3J(HH) 8.0 Hz, 4J(HH) 1.5 Hz, H8), 7.42 (d, 2H, 3J(HH) 8.5 Hz, H4), 7.42 (m, 1H, H2, overlap with H4), 7.33 (m, 1H, 3J(HH) 7.5 Hz, 4J(HH) 1.0 Hz, H9), 7.23 (dd, 1H, 3J(HH) 8.0 Hz, 4J(HH) 2.0 Hz, H11), 6.88 (d, 1H, 3J(HH) 8.0 Hz, H7), 6.48 (d, 1H, 3J(HH) 7.0 Hz, H3), 1.54 (s, 9H, CMe$_3$) and 1.43 (s, 9H, CMe$_3$). 13C-NMR (100 MHz, CDCl$_3$, δ in ppm): 153.4 (1C, C10), 141.4 (1C, C11), 137.5 (1C, C6), 130.1 (1C, C1), 129.0 (1C, C$^1'$), 128.8 (2C, C8), 128.1 (1C, C3), 128.1 (1C, C2), 127.6 (2C, C3), 126.7 (1C, C13), 126.7 (1C, C3), 126.1 (1C, C3), 125.9 (1C, C7), 125.8 (1C, C9) and 120.6 (1C, C12).

$[(\eta^3\text{-methallyl})\text{Pd}(2b)]PF_6$ (5)

The ligand (2b) (20 mg, 0.037 mmol) and $[(\eta^3\text{-methallyl})\text{Pd(µ-Cl)}]_2$ (7.2 mg, 0.018 mmol) were dissolved in dichloromethane (1 mL). After
15 min, a solution of NH₄PF₆ (12 mg, 0.073 mmol) in methanol (1 mL) was added. The solution was concentrated to yield the required product (5) as a yellow solid (26 mg, 81%). Found: C, 61.31; H, 5.02; N 3.18, calcd. (%) for C₄₄H₄₃N₂PF₆Pd·0.2CH₂Cl₂: C, 61.14; H, 5.04; N 3.22. IR (neat, v, cm⁻¹): 2959, 1610, 1559, 1476, 1460, 1240, 1275, 1267, 1116 and 829. ESI-MS (acetone, m/z): found: 771.2663; calcd. 771.2679 for C₂₉₄₈, 1618, 1541, 1422, 1392, 1275, 1224, 835, 750 and 764. ESI-MS (acetone, m/z): found: 705.2438; calcd. 705.2461 for C₄₄H₄₃N₂Pd·[M-PF₆]⁺. ¹H-NMR (400 MHz, CDCl₃, δ in ppm): 8.92 (br, d, 1H, 3J(HH) 4.5 Hz, H¹⁰), 8.06 (d, 1H, 3J(HH) 8.0 Hz, H¹ or H¹'), 7.99 (d, 1H, 3J(HH) 8.0 Hz, H¹ or H¹'), 7.78-7.76 (m, 6H, H⁵, H⁴ and H⁵'), 7.62-7.54 (m, 4H, H², H²', H⁶ and H⁶'), 7.52 (d, 2H, 3J(HH) 8.0 Hz, H⁴'), 7.18 (d, 2H, 3J(HH) 7.0 Hz, H³ and H³'), 6.89 (d, 1H, 3J(HH) 7.0 Hz, H⁷), 3.99 (br, 1H, allyl-H), 3.30 (br, 1H, allyl-H), 2.48 (br, 1H, allyl-H), 2.01 (s, 3H, Me), 1.85 (br, 1H, allyl-H), 1.51 (s, 9H, CMe₃) and 1.53 (s, 9H, CMe₃). ¹³C-NMR (100 MHz, CDCl₃, δ in ppm): 153.9 (1C, C¹⁰), 138.1 (1C, C⁵), 130.6 (1C, C¹ or C¹'), 129.3 (C₂, C² or C²'), 128.9 (Ar), 128.4 (Ar), 128.1 (C² or C²'), 127.9 (1C, C² or C²'), 127.5 (1C, C²'), 127.1 (Ar), 126.2 (1C, C³ or C³'), 125.7 (Ar), 125.5 (1C, C³ or C³'), 125.4 (1C, C⁹), 34.8 (1C, CMe₃), 34.7 (1C, CMe₃), 31.0 (3C, CMe₃), 31.0 (3C, CMe₃) and 22.1 (1C, Me).

[Pd(DMAP)(L)]PF₆ (6a)

To a suspension of (4a) (14 mg, 0.0197 mmol) in CH₂Cl₂ (2 mL) was added 4-dimethylaminopyridine (DMAP) (10 mg, 0.082 mmol) followed by NH₄PF₆ (12 mg, 0.073 mmol) in methanol (1 mL). After 15 min, the resulting pale yellow solution was concentrated to give (6a) as a yellow solid, (16 mg, 89%). Found: C, 60.29; H, 4.82; N 5.90. IR (neat, v, cm⁻¹): 2948, 1618, 1541, 1422, 1392, 1275, 1261, 1240, 835, 750 and 764. ESI-MS (acetone, m/z): found: 771.2663; calcd. 771.2679 for C₄₄H₄₃N₂Pd·[M-PF₆]⁺. ¹H-NMR (600 MHz, CDCl₃, δ in ppm): 8.81 (d, 1H, 3J(HH) 7.5 Hz, H³), 8.40 (d, 2H, 3J(HH) 7.0 Hz, H² of DMAP), 8.35 (d, 1H, 3J(HH) 8.0 Hz, H¹₃), 8.09 (d, 1H, 3J(HH) 8.0 Hz, H¹), 8.06 (d, 1H, 3J(HH) 8.0 Hz, H¹), 8.04 (br, d, 1H, 3J(HH) 6.5 Hz, H¹⁰, overlaps with H⁷), 7.82 (t, 1H, 3J(HH) 8.0 Hz, H²), 7.79 (d, 2H, 3J(HH) 8.5 Hz, H³), 7.65 (m, 1H, 3J(HH) 6.5 Hz, H⁵), 7.59 (m, 1H, 3J(HH) 8.0 Hz, 4J(HH) 1.5 Hz, H⁷), 7.42 (m, 1H, 3J(HH) 8.0 Hz, H² overlaps with H⁴), 7.43 (d, 2H, 3J(HH) 8.5 Hz, H⁴), 7.34 (dd, 1H, 3J(HH) 8.5 Hz, 4J(HH) 2.0 Hz, H¹²), 6.92 (d, 1H, 3J(HH) 8.5 Hz, H⁷), 6.84 (d, 2H, 3J(HH) 7.0 Hz, H³ of DMAP), 6.82 (d, 1H, 4J(HH) 2.0 Hz, H¹¹), 6.53 (d, 1H, 3J(HH) 7.0 Hz, H⁸), 3.23 (s, 6H, NMe₂), 1.55 (s, 9H, CMe₃) and 1.32 (s, 9H, CMe₃). ¹³C-NMR (150.9 MHz, CDCl₃, δ in ppm): 150.4 (1C, C¹⁰), 139.3 (1C, C⁸), 131.1 (1C, C¹¹), 130.6 (1C, C¹), 129.4 (1C, C¹'), 128.6 (2C, C⁴), 128.3
(1C, C^2), 128.1 (1C, C^2), 127.8 (2C, C^3), 127.7 (1C, C^6), 127.4 (1C, C^7), 127.3 (1C, C^3), 126.9 (1C, C^13), 126.2 (1C, C^3) and 122.1 (1C, C^12).

\[\text{[Pd(PPh}_3\text{)(L)]PF}_6 (6b) \]

To a solution of (4a) (15 mg, 0.021 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (3 mL) was added PPh\textsubscript{3} (7 mg, 0.026 mmol) followed by NH\textsubscript{4}PF\textsubscript{6} (12 mg, 0.073 mmol) in methanol (1 mL). After 30 min, the resulting pale yellow solution was concentrated to give (6b) as a yellow solid (19 mg, 85%). Found: C, 62.25; H, 4.73; N 2.46, calcd. (%) for C\textsubscript{58}H\textsubscript{50}N\textsubscript{2}P\textsubscript{2}F\textsubscript{6}Pd: C, 65.88; H, 4.77; N 2.65. IR (neat, ν, cm-1): 2966, 1584, 1419, 1276, 1261, 834, 765 and 750. ESI-MS (acetone, m/z): found: 911.2779; calcd. C\textsubscript{58}H\textsubscript{50}N\textsubscript{2}PPd, [M-PF\textsubscript{6}]+:

\[^{13}\text{C-NMR} (150.9
MHz, CDCl\textsubscript{3}, δ in ppm): 150.8 (1C, C1), 139.7 (1C, C6), 137.2 (1C, C11), 130.9 (1C, C1), 129.8 (1C, C1), 128.6 (2C, C4), 128.5 (1C, C3), 128.1 (1C, C3), 127.9 (2C, C5), 127.7 (1C, C13), 127.7 (1C, C3), 127.1 (1C, C7), 126.3 (1C, C3), 126.3 (1C, C3), 121.9 (1C, C12), 31.0 (3C, CMe\textsubscript{3}), and 30.1 (3C, CMe\textsubscript{3}).

\section*{Results and Discussion

\textit{Ligands and molybdenum complexes}}

The ligands (2a) and (2b) were prepared by a Diels-Alder cycloaddition reaction between 2-cyanopyridine and the corresponding cyclopentadienone (1a) and (1b), respectively (Scheme 1). Characterising data for the ligands and other metal complexes are given in the experimental section. Spectroscopic data are discussed later.
First we studied the coordination chemistry of these two ligands with zerovalent molybdenum centres stabilised by carbonyl ligands. Replacement of the two labile piperidine molecules of $[\text{Mo(CO)}_4(\text{piperidine})_2]$ (Darensbourg & Kump, 1978) with ligands (2) gave the tetracarbonylmolybdenum complexes of the type $[\text{Mo(CO)}_4(2)]$ (3) in which the ligand is coordinated to the metal through both nitrogen donors.

Palladium complexes

The coordination chemistry of the ligand (2b) with palladium(II) centres was investigated as similar ligand systems are known to undergo cyclometallation via C-H bond activation (Ollagnier et al. 2008).

We decided to use the ligand (2b) (LH) with tert-butyl groups at the para-positions due to easy identification of the cyclometallated complexes by NMR spectroscopy and to increase the solubility of the resulting palladium complexes. Treatment of (2b) with $[\text{Pd(OAc)}_2]$ in refluxing dichloromethane resulted in the formation of the cyclometallated palladium(II) complex $[\text{Pd(OAc)(L)}]$ (4a) as a yellow solid in 94% yield (Scheme 2). Treatment of (2b) with $[\text{PdCl}_2(\text{NCPh})_2]$ in refluxing dichloromethane resulted in the formation of the palladium(II) complex $[\text{PdCl(L)}]$ (4b) as a yellow solid in 88% yield.
We studied the substitution reactions of (4a) and (4b) with monoanionic ligands such as halides. The acetate group of (4a) can be easily replaced by halide ions to give [PdCl(L)] (4b), [PdBr(L)] (4c) and [PdI(L)] (4d) respectively. Treatment of (2b) with 0.5 equivalent of [[η₃-methallyl]Pd(μ-Cl)]₂ in dichloromethane and subsequent addition of NH₄PF₆ in methanol resulted in the formation of the N-N chelate complex (5) as a yellow solid in 81% yield.

We also studied the substitution reactions of (4a) with neutral ligands such as 4-dimethylaminopyridine (DMAP) and triphenylphosphine (Scheme 3).
Treatment of (4a) with DMAP in dichloromethane and subsequent addition of NH$_4$PF$_6$ in methanol resulted in the formation of the salt (6a) as a yellow solid in 89% yield. The analogous phosphine complex (6b) was prepared similarly in 85% yield.

Spectroscopic characterisation

The compounds were fully characterized using IR, NMR, mass spectrometry and elemental analysis. For complexes (4a), (4b), (4c), (4d), (5), (6a) and (6b), the ESI-MS gave signals in agreement with the theoretically expected masses and isotopic distributions of [M−OAc]$^+$, [M−halide]$^+$ or [M−PF$_6$]$^+$. The ligands (2a) and (2b) gave an isotopic distribution of [M+1]$^+$. Molybdenum complexes did not yield ESI-MS spectra. The 1H and 13C NMR chemical shifts were assigned by performing H−H and C−H COSY and NOE experiments.

The 1H and 13C NMR data observed for the 2-pyridyl group of the ligands (2a) and (2b), (δ) 7.5 (H7), 7.6 (H8), 7.12 (H9), 8.52 (H10), 124.6 (C7), 135 (C8), 121.6 (C9) and 148.4 (C10) ppm, are in good agreement with the values reported in the literature (Ollagnier et al. 2008 and Hii et al., 1995). The 1H NMR spectrum of (2b) displays two sets of AB-patterns with 3J(HH) = 8.5 Hz, consistent with the presence of two aryl groups.

The molybdenum complexes (3a) and (3b) were fully characterized. The IR spectrum of (3a) showed three IR bands at 2005, 1863 and 1823 cm$^{-1}$ for the carbonyl ligands. The aromatic region of the 1H NMR spectrum of (3b) is shown in Figure 3.
Figure 3 Aromatic region of the 1H NMR spectrum of (3b) with the atom labelling used for the assignment of NMR data

In the 13C NMR spectra of (3a) and (3b), the carbon resonances for the four carbonyl ligands appeared at 225, 217 and 205 ppm with the intensity ratio of (1:1:2). The signal at 205 ppm is assigned to the two axial carbonyl ligands. The proton resonance for H10 showed a downfield shift of 0.7 ppm upon coordination to molybdenum.

The cyclometallated palladium(II) complexes (4a) – (4d) are characterised by 1H and 13C NMR spectroscopy and they show similar chemical shifts except for H10 and H11. (4b), (4c) and (4d) are less soluble in CDCl$_3$ than (4a), and this limited solubility hindered performing some of the NMR experiments. The aromatic region of the 1H NMR spectrum of (4a) is shown in Figure 4. In the 1H NMR spectrum of (4a), H11 appeared as a doublet at 7.47 ppm with a weak four bond coupling to H12, 4J(HH) = 1.5 Hz. The chemical shifts of H10 and H11 showed up field shifts when the halide is changed from chloride to iodide. The peak observed at 160.4 ppm in the 13C NMR spectrum of (4a) is tentatively assigned to the orthometallated carbon. In the 1H NMR spectrum of (5) the allyl protons appeared as broad peaks at 3.99, 3.30, 2.45 and 1.85 ppm and are similar to other allyl compounds reported (Ahmad et al 1996 & Ollagnier et al 2008).
Figure 4 Aromatic region of the \(^1\)H NMR spectrum of (4a) with the atom labelling used for the assignment of NMR data

In the \(^1\)H NMR spectrum of [Pd(DMAP)(L)]PF\(_6\) (6a), H\(_{11}\) appeared as a doublet at 6.82 ppm with \(^4\)J(HH) = 2.0 Hz whilst the aryl protons of DMAP gave a AB-pattern at 8.40 and 6.84 ppm with \(^3\)J(HH) = 7.0 Hz. The phosphorus-31 resonance of (6b) was observed at 42.3 ppm. In the \(^1\)H NMR spectrum, H\(_{11}\) was a doublet of doublet at 6.75 ppm with coupling to H\(_{10}\) and phosphorus, \(^4\)J(PHP) = 6.0 Hz.

Conclusion

We have prepared a novel ligand system based on fluoranthene which can act as a bidentate ligand through both N-donors and an anionic terdentate NNC-ligand.

Acknowledgements

The authors are grateful to Dr. John O’Brien and M. Ruether for NMR support. S.D.P. thanks Science Foundation Ireland and CRANN for financial support.
References

